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A B S T R A C T

In the framework of voting theory, Young’s method consists in
removing a minimum number of voters in order to obtain a
Condorcet winner. We study here another method, consisting
in removing a minimum number of candidates in order to obtain
a Condorcet winner. We show that this method leads to the same
winners as Copeland’s tournament solution, which selects a
candidate who defeats a maximum number of other candidates
in the pairwise comparison method advocated by Condorcet.
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I. INTRODUCTION

At the end of the 18th century, Condorcet [5] suggested a method, based
on pairwise comparisons, in order to determine the winner of an election2.
More precisely, a Condorcet winner is a candidate who is preferred to any
other candidate by a majority of voters. Unfortunately, as shown by
Condorcet himself, such a candidate does not always exist. Several methods
have been designed in order to restore a Condorcet winner when the
preferences of the voters do not generate such a Condorcet winner. Among
them, Young’s method [15] (see also [4]) consists in removing a minimum
number of voters so that a Condorcet winner appears. From a democratic
point of view, it can be quite difficult to explain to the voters why it is
necessary not to take their preferences into account and not the votes of
some other voters. Moreover, the computation of the Young winners is
difficult, more precisely NPhard [14], as well as checking that a given
candidate is a Young winner. It is maybe more realistic to imagine that
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agreements or negotiations may lead some candidates to withdraw their
candidatures. We can then wonder how many candidates it would be
necessary to remove in order to obtain a new election admitting a Condorcet
winner.

In this paper, I investigate such an approach and I show that removing
a minimum number of candidates in order to obtain a Condorcet winner
leads to the same winners as another wellknown method, namely
Copeland’s method [6]3, which selects a candidate who defeats a maximum
number of other candidates in the pairwise comparison method. This
constitutes, to my knowledge, a new property of Copeland’s method.

More precisely, Section II depicts Copeland’s method and Young’s
method, within the context of voting theory. Section III specifies the new
property of Copeland’s solution.

II. COPELAND’S TOURNAMENT SOLUTION AND YOUNG’S
METHOD

In order to determine the winner of an election, Condorcet [5] designed
the following method, based on pairwise comparisons: for each candidate
x and each candidate y with x � y, we compute the number m

xy
 of voters

who prefer x to y. Then x is considered as preferred to y in Condorcet’s
method if a majority of voters prefers x to y, i.e. if we have m

xy
 > m

yx
. This

defines the (strict) majority relation T: xTy � m
xy

 > m
yx

. In some cases, there
exists a Condorcet winner, i.e. a candidate C defeating any other candidate
in such a pairwise comparisons method: �  x � C, m

Cx
 > m

xC
. If there exists

a Condorcet winner, then he or she is unique and several voting procedures
then select this Condorcet winner as the winner of the election. But it is
wellknown, as shown by Condorcet himself, that this method may fail in
determining a winner, even if all the voters’ preferences are assumed to be
linear orders. Such a situation can be illustrated by the following example.

Example: Assume that m = 7 voters must rank n = 4 candidates a, b, c,
and d. The preferences of the voters are supposed to be given by the
following linear orders, where x > y means that x is preferred to y by the
considered voter (with the transitivity assumption: x > y and y > z yield x > z):

• the preferences of two voters are: a > b > c > d;

• the preferences of two voters are: c > d > a > b;

• the preference of one voter is: b > d > a > c;

• the preference of one voter is: c > b > d > a;

• the preference of one voter is: d > a > b > c.
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The quantities m
xy

 involved in Condorcet’s procedure are the following,
where the bold values show, for each pair {x, y} of candidates with x � y,
the largest between the two quantities m

xy
 and m

yx
:

• m
ab

 = 5; m
ba

 = 2;

• m
ac

 = 4; m
ca
 = 3;

• m
ad

 = 2; m
da

 = 5;

• m
bc

 = 4; m
cb
 = 3;

• m
bd

 = 4; m
db

 = 3;

• m
cd

 = 5; m
dc

 = 2.

Here, there is no Condorcet winner. The majority relation T
Ex

 for the
example is given by: aT

Ex
b, aT

Ex
c, bT

Ex
c, bT

Ex
d, cT

Ex
d, dT

Ex
a (T

Ex
 is not

transitive).

If we assume that there is no tie (i.e., we cannot have m
xy

 = m
yx

), as we
do in the sequel, the majority relation T is a tournament, i.e. an antisymmetric
and complete relation: for any pair of distinct candidates {x, y}, one and
only one of the two possibilities xTy or yTx occurs.

Let X denote the set of candidates. In his book [9], J.F. Laslier defines a
tournament solution S as any correspondence which associates to a
tournament T defined on X a nonempty subset S(T) of X, which is steady
by tournament isomorphism (if the names of the candidates change, the
names of the winners change accordingly) and which selects the Condorcet
winner of T when there exists such a candidate. In other words, S must
fulfil the following three conditions:

1. for any tournament T defined on the set X of candidates, we have
���  S(T) � X;

2. for any isomorphism �, we have S o � = � o S;

3. if T admits a Condorcet winner C, S(T) = {C}.

Among the different tournament solutions, the one designed by
A.H. Copeland [6] is easy to compute (more precisely, it is polynomial, see
for instance [3] or [7]). To define it, let s(x) denote, for any candidate x, the
number of candidates defeated by x, i.e. the number of candidates y with
m

xy
 > m

yx
; s(x) is called the Copeland score of x; it is equivalently the number

of candidates y with xTy. Then a Copeland winner is any candidate with a
maximum Copeland score. We may illustrate this thanks to the previous
example.
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Example: For the previous example, the Copeland scores s
Ex

 of the four
candidates are s

Ex
(a) = s

Ex
(b) = 2, s

Ex
(c) = s

Ex
(d) = 1. Thus a and b are the

Copeland winners of the tournament T
Ex

.

In his paper [12], H. Moulin studies several properties of Copeland’s
solution, even if he advocated the choice of other tournament solutions.
Copeland’s solution is so simple and popular that it is usually used as a
reference to measure the disparity between tournament solutions, under
the name of Copeland value of a solution [8] – see also [9].

Another way to obviate the lack of Condorcet winner is to alter the set
of the preferences of the voters in order to obtain a Condorcet winner.
Such an approach was suggested by H. P. Young in 1977 [15]. In [15],
H. P. Young suggested to remove the minimum number of voters so that a
Condorcet winner appears. For each candidate x, we define the Young score
Y(x) of x as the minimum number of voters whose simultaneous removals
allow x to become a Condorcet winner. Any candidate with a minimum
Young score is a Young winner. We illustrate this once again thanks to the
previous example.

Example: The Young scores Y
Ex

 of the four candidates of the previous
example are: Y

Ex
(a) = 4, Y

Ex
(b) = 4, Y

Ex
(c) = 2, Y

Ex
(d) = 4. To show this, note

that removing a voter decreases m
xy

 by 0 (if y is preferred to x by the
considered voter) or by 1 (if x is preferred to y by the considered voter).
Thus, if we consider two candidates x and y with m

yx
 – m

xy
 � 0, we must

remove at least m
yx

 – m
xy

 + 1 voters if we want to obtain a new difference
m

xy
 – m

yx
 which is strictly positive. Applied to our example, this argument

leads to Y
Ex

(a) � 4 (because m
da

 – m
ad

 = 3), Y
Ex

(b) � 4 (because m
ab

 – m
ba

 = 3),
Y

Ex
(c) � 2 (because m

bc
 – m

cb
 = 1), Y

Ex
(d) � 4 (because m

cd
 – m

dc
 = 3). Then it is

easy, in our example, to show that these inequalities are in fact equalities.
For instance, to make c become a Condorcet winner, it is sufficient to remove
the first two voters (other choices are possible). Thus, c is the only Young
winner of T

Ex
 (observe that c is not a Copeland winner of T

Ex
...).

III. LINK BETWEEN COPELAND’S SOLUTION AND THE REMOVAL
OF CANDIDATES

Instead of removing voters from the election, as in Young’s method, we
can wonder how many candidates it would be necessary to remove in order
to obtain a new election admitting a Condorcet winner. More precisely, for
each candidate x, we define the removal score of x, r(x), as the minimum
number of candidates that must be removed so that x becomes a Condorcet
winner. Thanks to these scores, we may define the winner of the original
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election as any candidate x with a minimum score r(x). Let us call this
procedure the candidatesremoval procedure.

Note that other voting methods are based on the removal of candidates
in order to find a winner. For instance, the procedure called single transferable
vote (STV, also known as preferential voting or preference voting, or still as
instantrunoff voting) iteratively removes the candidate who is the least often
ranked at the first position until there is a candidate who gained at least
(m + 1)/2 votes, where m still denotes the number of voters. Similarly,
E.J. Nanson [13] and J.M. Baldwin [1] designed methods based on Borda’s
method [2], and consisting in eliminating iteratively candidates with low
Borda scores until only one candidate remains, who is then the winner.
But, to my knowledge, nobody suggested the procedure depicted above.

We show now that the candidatesremoval procedure provides the same
winners as Copeland’s solution (for the example, we have r(a) = 1, r(b) = 1,
r(c) = 2, r(d) = 2: a and b are the winners according to the candidatesremoval
procedure; as seen above, they are the Copeland winners as well). For this,
we assume that we deal with m voters who must choose between n
candidates; X denotes this set of candidates. We also assume that the
preferences of the voters are linear orders defined on X. Moreover, with
the same notation as above, we assume that there is no tie: � x � X,
� y � X with x � y, m

xy
 � m

yx
. The result stated in the following theorem is

linked to the usual axiom of independence of irrelevant candidates: the
collective preference between candidates x and y must depend only on the
individual preferences between x and y. In other words, the collective
preference between x and y must remain the same as long as the individual
preferences between x and y do not change. It is what happens when a
candidate z is removed, leaving the quantities m

xy
 and m

yx
 unchanged for

x � z and y � z.

Theorem

For any election fulfilling the previous hypotheses, any winner according
to the candidatesremoval procedure is a Copeland winner of the majority
tournament and conversely.

Proof

Let x be a candidate. Let D(x) be the set of candidates who defeat x:
� y � D(x), m

xy
 < m

yx
. For �� {x, y}, the removal of z does not change the

values of m
xy

 and m
xy

. Thus, when we apply the candidatesremoval
procedure, the only way to transform x into a Condorcet winner is to remove



106 Olivier Hudry

all the candidates belonging to D(x). Conversely, removing all the elements
of D(x) suffices to transform x into a Condorcet winner of the election
induced by the remaining candidates. Hence the relation r(x) = �D(x)�, where
r(x) still denotes the removal score of x. On the other hand, we have
the following relation between the Copeland score s(x) and r(x): s(x) =
n – r(x) – 1. Indeed, any candidate y other than x either defeats x, and then
y belongs to D(x), or is defeated by x, and then y contributes for 1 to the
Copeland score of x. Hence the relations �D(x)� + s(x) = r(x) + s(x) = n – 1.

So, minimizing r(x) in order to obtain a winner according to the
candidatesremoval procedure is the same as maximizing s(x), which
provides a Copeland winner and, conversely, maximizing s(x) in order to
obtain a Copeland winner is the same as minimizing r(x), which provides
a winner according to the candidatesremoval procedure. ���

Though its proof is very easy, this result answers a natural question
with respect to Young’s procedure (what happens if we replace the removal
of voters by the removal of candidates?) and provides a new (to my
knowledge) property of Copeland’s solution. With this respect, it seems to
me that it deserves to be noted.
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